
SDPs for Max Cut Approximations

Arvind Ramaswami

July 25, 2021

1

Max Cut Problem

Definiton: Given a weighted undirected graph G = (V,E) and a weight

function w : v × V → R+, we want to find the max cut, i.e.

max
S∈V

w(S, S) = max
S⊂V

∑
i∈S

∑
j 6∈S

wij

Computing the optimal solution to MAX CUT is NP-hard (even when all

the weights are equal to 1).

There has however been work to approximate the optimal solution in

polynomial time.

2

Max Cut Problem

Definiton: Given a weighted undirected graph G = (V,E) and a weight

function w : v × V → R+, we want to find the max cut, i.e.

max
S∈V

w(S, S) = max
S⊂V

∑
i∈S

∑
j 6∈S

wij

Computing the optimal solution to MAX CUT is NP-hard (even when all

the weights are equal to 1).

There has however been work to approximate the optimal solution in

polynomial time.

2

Max Cut Problem

Definiton: Given a weighted undirected graph G = (V,E) and a weight

function w : v × V → R+, we want to find the max cut, i.e.

max
S∈V

w(S, S) = max
S⊂V

∑
i∈S

∑
j 6∈S

wij

Computing the optimal solution to MAX CUT is NP-hard (even when all

the weights are equal to 1).

There has however been work to approximate the optimal solution in

polynomial time.

2

Approximation definition

Definition: For a maximization problem, let OPT denote the optimal

solution. Define an algorithm to be an α-approximation algorithm if it

can return a solution with value at least α ·OPT .

1
2 -approximation algorithm for MAX CUT: Assign each vertex one by

one to either S or S (pick whichever side will result in a larger cut size

with the vertices that are already assigned). This will return a solution of

size ≥ 1
2

∑
i∈S
∑
j 6∈S wij = 1

2 ·OPT .

Slightly improved approximation algorithms for unweighted MAX CUT

(listed in [1]):

• 1
2 + 1

2m (Vitányi 1981)

• 1
2 + n−1

4m (Poljak and Turźık 1982)

• 1
2 + 1

2n (Haglin and Venkatesan 1991

• 1
2 + 1

2∆ (Hofmeister and Lefmann 1995)

Major improvement using SDPs: 0.878-approximation (Goemans

Williamson 1995 [1])

3

Approximation definition

Definition: For a maximization problem, let OPT denote the optimal

solution. Define an algorithm to be an α-approximation algorithm if it

can return a solution with value at least α ·OPT .

1
2 -approximation algorithm for MAX CUT: Assign each vertex one by

one to either S or S (pick whichever side will result in a larger cut size

with the vertices that are already assigned). This will return a solution of

size ≥ 1
2

∑
i∈S
∑
j 6∈S wij = 1

2 ·OPT .

Slightly improved approximation algorithms for unweighted MAX CUT

(listed in [1]):

• 1
2 + 1

2m (Vitányi 1981)

• 1
2 + n−1

4m (Poljak and Turźık 1982)

• 1
2 + 1

2n (Haglin and Venkatesan 1991

• 1
2 + 1

2∆ (Hofmeister and Lefmann 1995)

Major improvement using SDPs: 0.878-approximation (Goemans

Williamson 1995 [1])

3

Approximation definition

Definition: For a maximization problem, let OPT denote the optimal

solution. Define an algorithm to be an α-approximation algorithm if it

can return a solution with value at least α ·OPT .

1
2 -approximation algorithm for MAX CUT: Assign each vertex one by

one to either S or S (pick whichever side will result in a larger cut size

with the vertices that are already assigned). This will return a solution of

size ≥ 1
2

∑
i∈S
∑
j 6∈S wij = 1

2 ·OPT .

Slightly improved approximation algorithms for unweighted MAX CUT

(listed in [1]):

• 1
2 + 1

2m (Vitányi 1981)

• 1
2 + n−1

4m (Poljak and Turźık 1982)

• 1
2 + 1

2n (Haglin and Venkatesan 1991

• 1
2 + 1

2∆ (Hofmeister and Lefmann 1995)

Major improvement using SDPs: 0.878-approximation (Goemans

Williamson 1995 [1])

3

Approximation definition

Definition: For a maximization problem, let OPT denote the optimal

solution. Define an algorithm to be an α-approximation algorithm if it

can return a solution with value at least α ·OPT .

1
2 -approximation algorithm for MAX CUT: Assign each vertex one by

one to either S or S (pick whichever side will result in a larger cut size

with the vertices that are already assigned). This will return a solution of

size ≥ 1
2

∑
i∈S
∑
j 6∈S wij = 1

2 ·OPT .

Slightly improved approximation algorithms for unweighted MAX CUT

(listed in [1]):

• 1
2 + 1

2m (Vitányi 1981)

• 1
2 + n−1

4m (Poljak and Turźık 1982)

• 1
2 + 1

2n (Haglin and Venkatesan 1991

• 1
2 + 1

2∆ (Hofmeister and Lefmann 1995)

Major improvement using SDPs: 0.878-approximation (Goemans

Williamson 1995 [1])
3

Improved MAX CUT

approximation with SDPs

Quadratic Programming Formulation

Let the vertices of the graph be enumerated as v1, ..., vn.

Define x1, x2, ..., xn ∈ −1, 1 such that xi = 1 if xi ∈ S in the partition

(S, S), and let xi = −1 otherwise.

We can express the max cut problem as the following integer quadratic

program:

maximize
1

2

∑
(i,j)∈E

wij(1− xixj)

subject to xi ∈ {−1, 1}, i = 1, . . . , n
(Q)

Solving an integer quadratic program is NP-hard, so we want to reduce

this to something more tractible.

4

Quadratic Programming Formulation

Let the vertices of the graph be enumerated as v1, ..., vn.

Define x1, x2, ..., xn ∈ −1, 1 such that xi = 1 if xi ∈ S in the partition

(S, S), and let xi = −1 otherwise.

We can express the max cut problem as the following integer quadratic

program:

maximize
1

2

∑
(i,j)∈E

wij(1− xixj)

subject to xi ∈ {−1, 1}, i = 1, . . . , n
(Q)

Solving an integer quadratic program is NP-hard, so we want to reduce

this to something more tractible.

4

Quadratic Programming Formulation

Let the vertices of the graph be enumerated as v1, ..., vn.

Define x1, x2, ..., xn ∈ −1, 1 such that xi = 1 if xi ∈ S in the partition

(S, S), and let xi = −1 otherwise.

We can express the max cut problem as the following integer quadratic

program:

maximize
1

2

∑
(i,j)∈E

wij(1− xixj)

subject to xi ∈ {−1, 1}, i = 1, . . . , n
(Q)

Solving an integer quadratic program is NP-hard, so we want to reduce

this to something more tractible.

4

SDP Relaxation

We want an approximate solution to

maximize
1

2

∑
(i,j)∈E

wij(1− xixj)

subject to xi ∈ {−1, 1}, i = 1, . . . , n
(Q)

We can think about each xi as unit vector in an axis.

We can relax it as follows:

maximize
1

2

∑
(i,j)∈E

wij(1− vi · vj)

subject to vi ∈ Sn, i = 1, . . . , n
(SDP-CUT)

Let Z be the optimal value attained by ??. Every solution in Q is feasible

in SDP-CUT, so Z is an upper bound to OPT .

5

SDP Relaxation

We want an approximate solution to

maximize
1

2

∑
(i,j)∈E

wij(1− xixj)

subject to xi ∈ {−1, 1}, i = 1, . . . , n
(Q)

We can think about each xi as unit vector in an axis.

We can relax it as follows:

maximize
1

2

∑
(i,j)∈E

wij(1− vi · vj)

subject to vi ∈ Sn, i = 1, . . . , n
(SDP-CUT)

Let Z be the optimal value attained by ??. Every solution in Q is feasible

in SDP-CUT, so Z is an upper bound to OPT .

5

SDP Relaxation

We want an approximate solution to

maximize
1

2

∑
(i,j)∈E

wij(1− xixj)

subject to xi ∈ {−1, 1}, i = 1, . . . , n
(Q)

We can think about each xi as unit vector in an axis.

We can relax it as follows:

maximize
1

2

∑
(i,j)∈E

wij(1− vi · vj)

subject to vi ∈ Sn, i = 1, . . . , n
(SDP-CUT)

Let Z be the optimal value attained by ??. Every solution in Q is feasible

in SDP-CUT, so Z is an upper bound to OPT .
5

Goemans-Williamson Max Cut Approximation

Recall the SDP relaxation:

maximize
1

2

∑
(i,j)∈E

wij(1− vi · vj)

subject to vi ∈ Sn, i = 1, . . . , n
(SDP-CUT)

It can be shown that the solution Z can be solved (within ε) in

polynomial time. Consider the following algorithm for obtaining the max

cut:

(i) Solve SDP-CUT and obtain vectors v1, v2, ..., vn ∈ Rn.

(ii) Obtain a cut (S, S) as follows. Sample a vector r uniformly from

Sn, and for each i, assign vertex i to S if 〈vi, r〉 > 0, and assign

vertex i to S otherwise.

Step (ii) is often referred to as ”random hyperplane rounding.”

6

Goemans-Williamson Max Cut Approximation

Recall the SDP relaxation:

maximize
1

2

∑
(i,j)∈E

wij(1− vi · vj)

subject to vi ∈ Sn, i = 1, . . . , n
(SDP-CUT)

It can be shown that the solution Z can be solved (within ε) in

polynomial time. Consider the following algorithm for obtaining the max

cut:

(i) Solve SDP-CUT and obtain vectors v1, v2, ..., vn ∈ Rn.

(ii) Obtain a cut (S, S) as follows. Sample a vector r uniformly from

Sn, and for each i, assign vertex i to S if 〈vi, r〉 > 0, and assign

vertex i to S otherwise.

Step (ii) is often referred to as ”random hyperplane rounding.”

6

Goemans-Williamson Max Cut Approximation

Recall the SDP relaxation:

maximize
1

2

∑
(i,j)∈E

wij(1− vi · vj)

subject to vi ∈ Sn, i = 1, . . . , n
(SDP-CUT)

It can be shown that the solution Z can be solved (within ε) in

polynomial time. Consider the following algorithm for obtaining the max

cut:

(i) Solve SDP-CUT and obtain vectors v1, v2, ..., vn ∈ Rn.

(ii) Obtain a cut (S, S) as follows. Sample a vector r uniformly from

Sn, and for each i, assign vertex i to S if 〈vi, r〉 > 0, and assign

vertex i to S otherwise.

Step (ii) is often referred to as ”random hyperplane rounding.”

6

Proof of Goemans-Williamson

Let v1, ..., vn be the vectors, and let Z be the value of the obtimal

objective of SDP-CUT.

For an edge (i, j), let θij be the angle between vi and vj . The probability

that they are located on opposite sides of the cut is equal to
θij
π

The contribution of θij to the objective function is equal to

wij(1− vi · vj) =
wij(1−cosθij)

2 . Call this SDP (θij)

It suffices to minimize
E[Cutij]
SDP (θij) , which is minθ>0

θ(1−cos θ)
2π ≈ 0.878.

Thus, Goemans-Williamson gives a solution that is ≥ αZ ≥ αOPT ,

where α ≈ 0.878.

This is proven to be tight for general graphs since there are cases where

OPT = α ∗ Z (i.e. the program has integrality gap α).

7

Proof of Goemans-Williamson

Let v1, ..., vn be the vectors, and let Z be the value of the obtimal

objective of SDP-CUT.

For an edge (i, j), let θij be the angle between vi and vj . The probability

that they are located on opposite sides of the cut is equal to
θij
π

The contribution of θij to the objective function is equal to

wij(1− vi · vj) =
wij(1−cosθij)

2 . Call this SDP (θij)

It suffices to minimize
E[Cutij]
SDP (θij) , which is minθ>0

θ(1−cos θ)
2π ≈ 0.878.

Thus, Goemans-Williamson gives a solution that is ≥ αZ ≥ αOPT ,

where α ≈ 0.878.

This is proven to be tight for general graphs since there are cases where

OPT = α ∗ Z (i.e. the program has integrality gap α).

7

Proof of Goemans-Williamson

Let v1, ..., vn be the vectors, and let Z be the value of the obtimal

objective of SDP-CUT.

For an edge (i, j), let θij be the angle between vi and vj . The probability

that they are located on opposite sides of the cut is equal to
θij
π

The contribution of θij to the objective function is equal to

wij(1− vi · vj) =
wij(1−cosθij)

2 . Call this SDP (θij)

It suffices to minimize
E[Cutij]
SDP (θij) , which is minθ>0

θ(1−cos θ)
2π ≈ 0.878.

Thus, Goemans-Williamson gives a solution that is ≥ αZ ≥ αOPT ,

where α ≈ 0.878.

This is proven to be tight for general graphs since there are cases where

OPT = α ∗ Z (i.e. the program has integrality gap α).

7

Proof of Goemans-Williamson

Let v1, ..., vn be the vectors, and let Z be the value of the obtimal

objective of SDP-CUT.

For an edge (i, j), let θij be the angle between vi and vj . The probability

that they are located on opposite sides of the cut is equal to
θij
π

The contribution of θij to the objective function is equal to

wij(1− vi · vj) =
wij(1−cosθij)

2 . Call this SDP (θij)

It suffices to minimize
E[Cutij]
SDP (θij) , which is minθ>0

θ(1−cos θ)
2π ≈ 0.878.

Thus, Goemans-Williamson gives a solution that is ≥ αZ ≥ αOPT ,

where α ≈ 0.878.

This is proven to be tight for general graphs since there are cases where

OPT = α ∗ Z (i.e. the program has integrality gap α).

7

Guarantees when the max cut is large

Goemans and Williamson also showed that when Z = tW , where W is

the total weight of all edges, for t > .84458, the algorithm returns a cut

of size ≥ αt ∗OPT , where αt = h(t)
t , where h(t) = arccos 1−2t

π .

The

above ratio is strictly > α unless t = α.

8

Guarantees when the max cut is large

Goemans and Williamson also showed that when Z = tW , where W is

the total weight of all edges, for t > .84458, the algorithm returns a cut

of size ≥ αt ∗OPT , where αt = h(t)
t , where h(t) = arccos 1−2t

π . The

above ratio is strictly > α unless t = α.

8

A note about hardness of approximation

It has been proven that if there is an 16
17 + ε-approximation for Max Cut,

then P = NP (proved using theory related to PCP hardness).

It has also been shown that if there is an α+ ε-approximation, then this

would disprove the Unique Games Conjecture.

A detailed survey about this exists in [2].

9

Improved techniques

Graphs of bounded degree

We will now assume edge weights have value 1.

[3] uses the following SDP formulation:

maximize
1

2

∑
(i,j)∈E

(1− vi · vj)

subject to (1)vi ∈ Sn, i = 1, . . . , n

(2)〈vi, vj〉+ 〈vi, vk〉+ 〈vj , vk〉 >= 1

〈vi, vj〉 − 〈vi, vk〉 − 〈vj , vk〉 ≥ 1, ∀i, j, k ∈ [n]

(SDP-Delta)

(2) is referred to as the ”triangle constraint” – allows guarantees of

misplaced vertices in the analysis, so one can make greedy steps

afterward to improve the cut. Obtained bounds were 0.921 for ∆(G) ≤ 3

and α+ Ω(1
∆2) for general ∆.

10

Graphs of bounded degree

We will now assume edge weights have value 1.

[3] uses the following SDP formulation:

maximize
1

2

∑
(i,j)∈E

(1− vi · vj)

subject to (1)vi ∈ Sn, i = 1, . . . , n

(2)〈vi, vj〉+ 〈vi, vk〉+ 〈vj , vk〉 >= 1

〈vi, vj〉 − 〈vi, vk〉 − 〈vj , vk〉 ≥ 1, ∀i, j, k ∈ [n]

(SDP-Delta)

(2) is referred to as the ”triangle constraint” – allows guarantees of

misplaced vertices in the analysis, so one can make greedy steps

afterward to improve the cut. Obtained bounds were 0.921 for ∆(G) ≤ 3

and α+ Ω(1
∆2) for general ∆.

10

RPR2 technique

Similar to Goemans-Williamson but more general (does hyperplane

rounding based on a function f). Developed by Fiege 2006 [4]

Algorithm:

(i) Solve SDP-CUT to obtain v1, v2, ..., vn.

(ii) Sample r1, r2, ..., rn independently from N (0, 1), and let

r = (r1, r2, ..., rn).

(iii) Create x1, x2, ..., xn where xi = 〈vi, r〉.
(iv) With probability f(xi), assign vertex i to S. Otherwise assign vertex

i to S.

This is just Goemans-Williamson if we let f(xi) be 1 when xi > 0 and 0

otherwise.

Has improved guarantees for when the Z = tW for t < 0.844 (i.e. when

the max cut is small) over other algorithms like outward rotation (see

survey).

11

RPR2 technique

Similar to Goemans-Williamson but more general (does hyperplane

rounding based on a function f). Developed by Fiege 2006 [4]

Algorithm:

(i) Solve SDP-CUT to obtain v1, v2, ..., vn.

(ii) Sample r1, r2, ..., rn independently from N (0, 1), and let

r = (r1, r2, ..., rn).

(iii) Create x1, x2, ..., xn where xi = 〈vi, r〉.
(iv) With probability f(xi), assign vertex i to S. Otherwise assign vertex

i to S.

This is just Goemans-Williamson if we let f(xi) be 1 when xi > 0 and 0

otherwise.

Has improved guarantees for when the Z = tW for t < 0.844 (i.e. when

the max cut is small) over other algorithms like outward rotation (see

survey).
11

Related problems

Max Bisection: Max Cut but with the constraint that the both sides of

the cut must have equal size.

Fiege et al. 2006 [4] used RPR2 for a .7028 approximation ratio.

There have been further improvements using the Lasserre Hierarchy and

relaxations of it up to 0.8776 [5]

Other related problems: Max k-cut, Max cut with limited unbalance,

generalizations of these problems to hypergraphs

12

Related problems

Max Bisection: Max Cut but with the constraint that the both sides of

the cut must have equal size.

Fiege et al. 2006 [4] used RPR2 for a .7028 approximation ratio.

There have been further improvements using the Lasserre Hierarchy and

relaxations of it up to 0.8776 [5]

Other related problems: Max k-cut, Max cut with limited unbalance,

generalizations of these problems to hypergraphs

12

Related problems

Max Bisection: Max Cut but with the constraint that the both sides of

the cut must have equal size.

Fiege et al. 2006 [4] used RPR2 for a .7028 approximation ratio.

There have been further improvements using the Lasserre Hierarchy and

relaxations of it up to 0.8776 [5]

Other related problems: Max k-cut, Max cut with limited unbalance,

generalizations of these problems to hypergraphs

12

Related problems

Max Bisection: Max Cut but with the constraint that the both sides of

the cut must have equal size.

Fiege et al. 2006 [4] used RPR2 for a .7028 approximation ratio.

There have been further improvements using the Lasserre Hierarchy and

relaxations of it up to 0.8776 [5]

Other related problems: Max k-cut, Max cut with limited unbalance,

generalizations of these problems to hypergraphs

12

Application to the extremal Max Cut problem

Denote b(G) to indicate the largest bipartite subgraph of G.

New result based on semidefinite programming:

Theorem (Carlson et al. 2020 [6]) Let G be a graph with n vertices and

m edges, and for each i ∈ [n], let Vi be a subset of i’s neighbors, and let

εi ≤ 1√
|Vi|

. Then

b(G) ≥ m

2
+

n∑
i=1

εi|Vi|
4π

−
∑

(i,j)∈E

εiεj |Vi ∩ Vj |
2

Note: plugging in |V | =
√
di and ε = 1√

di
implies Shearer’s theorem

13

Application to the extremal Max Cut problem

Denote b(G) to indicate the largest bipartite subgraph of G.

New result based on semidefinite programming:

Theorem (Carlson et al. 2020 [6]) Let G be a graph with n vertices and

m edges, and for each i ∈ [n], let Vi be a subset of i’s neighbors, and let

εi ≤ 1√
|Vi|

. Then

b(G) ≥ m

2
+

n∑
i=1

εi|Vi|
4π

−
∑

(i,j)∈E

εiεj |Vi ∩ Vj |
2

Note: plugging in |V | =
√
di and ε = 1√

di
implies Shearer’s theorem

13

Application to the extremal Max Cut problem (bounding b(G)

for H-free graphs)

Denote b(G) to indicate the largest bipartite subgraph of G.

New result based on semidefinite programming:

Theorem (Carlson et al. 2020 [6]) Let G be a graph with n vertices and

m edges, and for each i ∈ [n], let Vi be a subset of i’s neighbors, and let

εi ≤ 1√
|Vi|

. Then

b(G) ≥ m

2
+

n∑
i=1

εi|Vi|
4π

−
∑

(i,j)∈E

εiεj |Vi ∩ Vj |
2

Note: plugging in |V | =
√
di and ε = 1√

di
implies Shearer’s theorem

Proof outline: For each i ∈ [n], create a vector ˆv(i) ∈ Rn such that

v
(i)
j = 1 if i = j, −εi if j ∈ Vi, or 0 otherwise. This is an optimal SDP

solution, so lower bound b(G) after applying random hyperplane

rounding.

14

Application to the extremal Max Cut problem (bounding b(G)

for H-free graphs)

Denote b(G) to indicate the largest bipartite subgraph of G.

New result based on semidefinite programming:

Theorem (Carlson et al. 2020 [6]) Let G be a graph with n vertices and

m edges, and for each i ∈ [n], let Vi be a subset of i’s neighbors, and let

εi ≤ 1√
|Vi|

. Then

b(G) ≥ m

2
+

n∑
i=1

εi|Vi|
4π

−
∑

(i,j)∈E

εiεj |Vi ∩ Vj |
2

Note: plugging in |V | =
√
di and ε = 1√

di
implies Shearer’s theorem

Proof outline: For each i ∈ [n], create a vector ˆv(i) ∈ Rn such that

v
(i)
j = 1 if i = j, −εi if j ∈ Vi, or 0 otherwise. This is an optimal SDP

solution, so lower bound b(G) after applying random hyperplane

rounding.

14

Application to the extremal Max Cut problem (bounding b(G)

for H-free graphs)

Denote b(G) to indicate the largest bipartite subgraph of G.

New result based on semidefinite programming:

Theorem (Carlson et al. 2020 [6]) Let G be a graph with n vertices and

m edges, and for each i ∈ [n], let Vi be a subset of i’s neighbors, and let

εi ≤ 1√
|Vi|

. Then

b(G) ≥ m

2
+

n∑
i=1

εi|Vi|
4π

−
∑

(i,j)∈E

εiεj |Vi ∩ Vj |
2

Note: plugging in |V | =
√
di and ε = 1√

di
implies Shearer’s theorem

Proof outline: For each i ∈ [n], create a vector ˆv(i) ∈ Rn such that

v
(i)
j = 1 if i = j, −εi if j ∈ Vi, or 0 otherwise. This is an optimal SDP

solution, so lower bound b(G) after applying random hyperplane

rounding.
14

Extremal Max Cut problem – implications

Theorem (Carlson et al. 2020) Let G be a d-degenerate Kr − free
graph r ≥ 3. Then, there exists a constant c = c(r) > 0 such that

b(G) ≥
(

1

2
+

c

d
(l−1
2r−4

)
m

This leads to new conjectures

Conjecture 1 For d-degenerate H-free graphs, there exists c = c(H) > 0

such that

b(G) ≥
(

1

2
+

c√
d

)
m

Conjecture 2 For H-free graphs, there exists

ε = ε(H) > 0, c = c(H) > 0 such that

b(G) ≥ m

2
+ cm

3
4 +ε

15

Extremal Max Cut problem – implications

Theorem (Carlson et al. 2020) Let G be a d-degenerate Kr − free
graph r ≥ 3. Then, there exists a constant c = c(r) > 0 such that

b(G) ≥
(

1

2
+

c

d
(l−1
2r−4

)
m

This leads to new conjectures

Conjecture 1 For d-degenerate H-free graphs, there exists c = c(H) > 0

such that

b(G) ≥
(

1

2
+

c√
d

)
m

Conjecture 2 For H-free graphs, there exists

ε = ε(H) > 0, c = c(H) > 0 such that

b(G) ≥ m

2
+ cm

3
4 +ε

15

Future work

It would be interesting to analyze the extent to which semidefinite

programming used in extremal min cut problems, like the one earlier.

The Lasserre hierarchy (a structured way of making more and more tight

relaxations) has brought good ratios for Max Bisection [5]. It would be

interesting to see how well it does on other similar problems.

16

Bibliography

[1] Michael X. Goemans and David P. Williamson.

Improved approximation algorithms for maximum cut and

satisfiability problems using semidefinite programming.

1995.

[2] Jake Wellens.

Fourier analysis and inapproximability for max-cut: a case study.

2016.

[3] Langberg M. Feige U, Karpinski M.

Improved approximation of max-cut on graphs of bounded

degree.

2002.

17

[4] Langberg M. Feige U.

The rpr2 rounding technique for semidefinite programs.

2006.

[5] Per Austrin, Siavosh Benabbas, and Konstantinos Georgiou.

Better balance by being biased: A 0.8776-approximation for

max bisection, 2012.

[6] Charles Carlson, Alexandra Kolla, Ray Li, Nitya Mani, Benny

Sudakov, and Luca Trevisan.

Lower bounds for max-cut in h-free graphs via semidefinite

programming, 2020.

18

	Improved MAX CUT approximation with SDPs
	Improved techniques
	Bibliography

