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1 Introduction

Finding the max cut in a graph has many applications, including circuit design [1]. Studying
Max Cut has also given insight into how to solve other combinatorial optimization problems (for
example, [2] has used similar ideas to solve Max Cut and MAX-3SAT).

There have historically been two approaches to the max cut problem. One is a more extremal
approach – finding bounds for the max cut for graphs with certain property (i.e. triangle-free,
Kr-free, H-free). The other approach has been to algorithmically compute max cuts by finding
approximations of it. The focus of this survey will be on the latter, although it will touch a little
bit on a recent application of SDPs to the extremal max cut problem

This survey will present the approach taken by (Goemans et al. 1995 [2]) and will discuss improve-
ments made upon that, as well as open directions, for the Max Cut problem.

We will be dealing with weighted undirected graphs in this survey (although some of the examples
will restrict to graphs where the edges have weight 1). For a graph G = (V,E), and for (i, j) ∈ N×N,
let the weight wij equal the weight of the edge from i to j (if (i, j) ∈ E) or 0 otherwise. Define the
weight of a subgraph H to be w(H) =

∑
i,j∈V (H),i<j wij . Define a cut to be a partition of V (G)

into S and S for some S ⊂ V (G). Define the weight of the cut w(S, S) to be
∑

i∈S
∑

j∈S wij .

2 Problem statement

Given a weighted undirected graph G = (V,E) and a weight function w : v × V → R+, we want to
find the max cut, i.e.

max
S∈V

w(S, S) = max
S⊂V

∑
i∈S

∑
j 6∈S

wij

The entire problem is NP-hard (even for all weights equal to 1), so one thing we are interested in
is finding approximations for the max cut with particular guarantees. We will require the following
definition which is crucial in the study of approximation algorithms:

Definition (α-approximation): For a maximization problem, let OPT denote the optimal solution.
Define an algorithm to be an α-approximation algorithm if it can return a solution with value at
least α ·OPT .

From now on, we will be using OPT to refer to the optimal solution to Max Cut, and Z to refer to
the optimal solution of a relaxation.
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3 0.5-approximation algorithm for Max Cut

There is a trivial algorithm to find a 0.5-approximation. Label the vertices of G as v1, v2, ..., vn.
Take each vertex one-by-one, and assign it to either S or S. When adding the ith vertex, the total
weight of the edges that gets added to G[S ∪ S] is equal to W = w(G[NG(vi) ∩ {v1, ..., vi−1}]).
Assign vi to either S or S such that at least 1

2W gets added to the cut.

Thus, we guarantee that at least half of the total weight gets added to the cut, so the above is a
0.5-approximation for Max Cut.

(Goemans et al. [2]) stated that some earlier works were able to obtain slightly better approximation
algorithms:

• 1
2 + 1

2m (Vitányi 1981)

• 1
2 + n−1

4m (Poljak and Turźık 1982)

• 1
2 + 1

2n (Haglin and Venkatesan 1991

• 1
2 + 1

2∆ (Hofmeister and Lefmann 1995)

As we will see in the next section, we can do much better.

4 Using SDPs to approximate the max cut

We will open with an explanation of the ideas used in the paper (Goemans et al. 1995, [2])
that motivated a significant amount of future work related to using semidefinite programming for
combinatorial optimization. We will present a .878-approximation algorithm for Max Cut in this
section.

4.1 Quadratic program formulation

The Max Cut problem can be expressed as the following integer quadratic program:

maximize
1

2

∑
(i,j)∈E

wij(1− xixj)

subject to xi ∈ {−1, 1}, i = 1, . . . , n
(Q)

Here, xi = 1 if vi ∈ S and −1 otherwise. We can verify that the objective is equivalent to w(S, S′).
For (i, j) ∈ E, if viandvj are in the same set in (S, S′), this contributes 0 to the term 1 − xixj .
If one is in S and the other in S′, this contributes 2 to 1 − xixj and thus contributes wij to the
objective. This integer quadratic program is NP-hard to solve.
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4.2 Relaxation to SDP

Each xi can be thought of as a unit vector aligned with the ith axis in Rn. We will relax the
quadratic program such that each xi will be any arbitrary vector in Sn (the unit n-dimensional
sphere).

maximize
1

2

∑
(i,j)∈E

wij(1− vi · vj)

subject to vi ∈ Sn, i = 1, . . . , n
(SDP-CUT)

[3] refers to this formulation of semidefinite programming as vector programming.

We can see that the solution to Q is feasible to the solution of SDP-CUT, i.e. when vi ∈ ±ei for
each i. Thus, the optimal objective in SDP-CUT is an upper bound for OPT.

4.3 Algorithm

(Goemans et al. 1995) gives the following algorithm for approzimating the max cut:

(i) Solve SDP-CUT and obtain vectors v1, v2, ..., vn ∈ Rn.

(ii) Obtain a cut (S, S) as follows. Sample a vector r uniformly from Sn, and for each i, assign
vertex i to S if 〈vi, r〉 > 0, and assign vertex i to S otherwise.

The technique in step (ii) is now well-known as random hyperplane rounding. Visually, what is
happening is that a random hyperplane that contains the origin is sampled (r is a vector orthogonal
to this hyperplane), and each half-space contains the vertices on one side of the cut.

It can be shown (will not prove here) that step (ii) can equivalently be seen as sampling from n
independent standard normal distributions and projecting onto the unit sphere. This is useful for
more advanced techniques like RPR2, which will be discussed in Section 6.

4.4 Guarantees

Theorem: In general, the above algorithm can produce an α-approximation, where α = minθ>0
θ(1−cos θ)

2π ≈
0.878-approximation to Max Cut.

Proof:

Let v1, v2, ..., vn be the vectors in the optimal solution in SDP-CUT, and let Z be the value of the
objective function in the optimal solution.
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We will consider the contribution of each edge to the max cut. For an edge (i, j), define θij to be
the angle between vi and vj . The contribution of this edge to Z is equal to 1

2wij(1 − vi · vj) =
1
2wij(1 − cos θij), where θij is the angle between vectors vi and vj . Using the notation in [4], call
this contribution SDP (θij)

It can be proven (and intuitively seen) that randomly sampling r gives that sign(〈vi, r〉) 6= sign(〈vj , r〉)
with probability

θij
π . We can ignore the case where θij = 0 (since this will always contribute 0 to

the max cut), so the expected contribution of this edge will be wij
θij
π

To lower bound the approximation constant, we can just lower bound
wij

θij
π

SDP (θij)
= minθ>0

θ(1−cos θ)
2π ≈

0.878. Thus, E[cut] ≥ α · Z ≥ α ·OPT , as desired. �

We have that the bound is tight when θij is a minimizer of θ(1−cos θ)
2π , i.e. θij ≈ 2.33 or when

θij = 0.

4.5 Guarantees when the max cut is large

Goemans et al. 1995 [2] also give guarantees when Z = tW , where Z is the optimal objective
function in SDP-CUT, and W is the total weight of all edges.

A function h(t) = arccos 1−2t
π is defined, and for t > γ = .84458 (the optimal value of h(t)), the

following guarantee holds:

Theorem (adapted from Goemans-Williamson 1995) When Z = tW , then

E[cut] ≥ αtZ

where αt = h(t)
t

It can be verified that αt ≥ α, and equality is attained only if t = α.

From now on, we will assume the edge weights to be 1. Many of the below results can be generalized
to positive real edge weights, although some may possibly be with worse guarantees.

5 A brief note about hardness of approximation of MAX CUT

Hastad proved (using a variant of the PCP theorem) that a (16
17 + ε)-approximation for max cut

implies that P = NP . In fact, the Unique Games Conjecture implies that there an (α + ε)-
approximation implies that P = NP . More details can be seen in [5].
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6 Some Improvements in Special Cases

6.1 Graphs with bounded degree

Feige et al. 2002 [6] study approximations of max cut for graphs with maximum degree ≤ ∆ by
using an algorithm similar to Goemans and Williamson, but with extra constraints and a greedy
update step. Essentially it is the following:

maximize
1

2

∑
(i,j)∈E

(1− vi · vj)

subject to (1)vi ∈ Sn, i = 1, . . . , n
(2)〈vi, vj〉+ 〈vi, vk〉+ 〈vj , vk〉 >= 1
〈vi, vj〉 − 〈vi, vk〉 − 〈vj , vk〉 ≥ 1, ∀i, j, k ∈ [n]

(SDP-Delta)

Constraint (2) is also referred to as the ”triangle” constraint.

The paper defines a vertex to be ”misplaced” if it is on the same side as at least half of its
neighbors. [6] argues that constraint (2) allows one to lower bound misplaced vertices (after solving
the relaxation and performing random hyperplane rounding), and proposes a greedy strategy to
get rid of the misplaced vertices.

For vertices of degree at most 3 (with an additional SDP constraint that 〈vi, vj〉+〈vi, vk〉+〈vj , vk〉 =
−1∀(i, j, k) such that i is misplaced and j and k are neighbors of i), [6] gives a 0.921-approximation
for Max Cut. For general maximum degree ≤ ∆, they prove that SDP-Delta results in an α+Ω( 1

∆2 )-
approximation.

6.2 Outward Rotation

Zwick 1999 [7] gives a modification to the Goemans-Williamson algorithm for tighter guarantees
when the max cut is small. The high-level idea is projecting the solution to the SDP algorithm to
a higher dimensional space and performing random hyperplane rounding from there.

Recall SDP-CUT (remember we are now assuming the weights are equal to 1):

maximize
1

2

∑
(i,j)∈E

(1− vi · vj)

subject to vi ∈ Sn, i = 1, . . . , n

For some γ ∈ (0, 1), the algorithm does the following:

(i) Solve SDP-CUT to obtain v1, v2, ..., vn.
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(ii) For e1, e2, ...en (vectors orthogonal to v1, v2, ..., vn in R2n), create (for each i) v̂i =
√

1− γvi+√
γei.

(iii) Perform random hyperplane rounding on v̂1, ..., v̂n to obtain an optimal solution to Max Cut.

For Z = tW with t < 0.844, [7] proves that this algorithm guarantees an approximation ration of
αt > α.

6.3 RPR2 Rounding Technique

Fiege et al. 2006 [4] give a general method to lessen the number of misplaced vertices: RPR2

(random projection, randomized rounding). While the analysis doesn’t carry to the above case
where the vertices have bounded degree, it does apply to other cases, such as when the max cut is
within 0.6|E(G)|. The idea is similar Goemans-Williamson, but the random hyperplane rounding
step is more general.

Recall it was mentioned in Section 4.3 that sampling a random vector in Sn is equivalent to sampling
n unit Gaussians independently and projecting their cartesian product onto Sn. Here, we will avoid
the projection step and assign vertices to a cut with respect to a function f (rather than assigning
based on 〈vi, r〉.

Below is the formal statement of the RPR2 rounding technique (with respect to a function f):

(i) Solve SDP-CUT to obtain v1, v2, ..., vn.

(ii) Sample r1, r2, ..., rn independently from N (0, 1), and let r = (r1, r2, ..., rn).

(iii) Create x1, x2, ..., xn where xi = 〈vi, r〉.

(iv) With probability f(xi), assign vertex i to S. Otherwise assign vertex i to S.

Note that when f(xi) = 1 if xi > 0 or 0 otherwise, this is exactly the Goemans-Williason algo-
rithm.

It is in fact the case that outward rotation is a special case of RPR2 (where f(x) = Φ
(
x
√

1−γ
γ

)
).

Feige was able to make improvements to the approximation constant for light max cut.

The RPR technique has also been used to make improvements in other problems (see section
7).
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7 Related problems

7.1 Max bisection

Max Bisection is exactly the Max Cut problem, but with the additional constraint that the vertices
in both partitions have the equal. The RPR2 technique was used to get the approximation constant
up to .7028 by Fiege et al. 2006 [4]. There have been further improvements using the Lasserre
Hierarchy and relaxations of it (up to 0.8776, Austrin et al. 2012 [8]).

7.2 Other problems

There are also other problems that fall in a similar vein, such as max bisection with unlimited
balance, max k-cut, and generalizations of these problems to the hypergraph setting.

8 Application to the extremal Max Cut problem: Lower bounds
on the max cut for H-free graphs

Semidefinite programming has recently been applied to improve classical bounds ([9]) regarding the
largest bipartite subgraph of a graph. Denote b(G) to indicate the largest bipartite subgraph of
G. It is well known that b(G) ≥ 1

2 , and an extensively researched problem has been to analyze the
error term b(G)− 1

2 , or surplus for different classes of graphs.

The following recent theorem, which is a novel application of SDPs to the extremal max cut problem,
trivializes some earlier results.

Theorem (Carlson et al. 2020 [9]) Let G be a graph with n vertices and m edges, and for each
i ∈ [n], let Vi be a subset of i’s neighbors, and let εi ≤ 1√

|Vi|
. Then

b(G) ≥ m

2
+

n∑
i=1

εi|Vi|
4π
−
∑

(i,j)∈E

εiεj |Vi ∩ Vj |
2

This is proved using SDP’s as follows:

Proof sketch (see [9] for the full details):

For each i ∈ [n], create a vector ˆv(i) ∈ Rn such that v
(i)
j = 1 if i = j, −εi if j ∈ Vi, or 0 otherwise.

Then, letting vi := v(i)

||vi|| , it can be shown that v1, v2, ..., vn form a solution to SDP-CUT. Performing

random hyperplane rounding, [9] lower bounds the probability of any arbitrary edge being in the
cut, and summing gives Theorem 1.1.
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This theorem has been used to prove and conjecture a couple of lower bounds (mentioned in
[9]).

Recall Shearer’s bound:

Theorem (Shearer 1992) For a triangle-free graph withm edges, b(G) ≥ 1
2m+ 1

8
√

2

∑
v∈V

√
d(v).

It is actually an immediate consequence of Carlson et al. 2020 (up to a constant) by letting Vi be
the neighborhood of i, and let εi = di, where di is the degree of vertex i.

The above theorem also implies the following result about Kr-free graphs:

Theorem (Carlson et al. 2020) Let G be a d-degenerate Kr−free graph r ≥ 3. Then, there exists
a constant c = c(r) > 0 such that

b(G) ≥

(
1

2
+

c

d
(l−1
2r−4

)
m

Carlson et al. also propose the following two conjectures from the above theorems:

Conjecture 1 For d-degenerate H-free graphs, there exists c = c(H) > 0 such that

b(G) ≥
(

1

2
+

c√
d

)
m

It can be shown that the above conjecture implies the following conjecture:

Conjecture 2 For H-free graphs, there exists ε = ε(H) > 0, c = c(H) > 0 such that

b(G) ≥ m

2
+ cm

3
4

+ε

9 Future work

For a little over the last two decades, semidefinite programming has been frequently used in com-
binatorial optimization, but it would be interesting to analyze the extent to which it is used in
extremal problems, like the ones in Section 8.

The Lasserre hierarchy (a structured way of making more and more tight relaxations) has been
useful for obtaining strong approximation ratios for Max Bisection [8], and it could be worthwhile
to investigate how well it works for other variants of Max Cut and how well it compares with
others.
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