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1 Abstract

Tensor PCA was introduced by Richard and Montanari in 2015 [1]. We look at a statistical query
approach for proving lower bounds in terms of the number of samples for polynomial-time statistical
query estimators to this problem from Dudeja, Hsu 2021 [2]. The SQ approach has gaps compared
to the state of the art for Tensor PCA.

2 Notations

Here are some notations that are used in later parts of this report.

For two vectors v, w ∈ RRd, define v ⊗ w to be a tensor T where Tij = viwj .

This can be generalized to T = v1 ⊗ v2 ⊗ ...⊗ vk (i.e.
⊗k vi) where Ti1i2...ik = vi1vi2 ...vik

Let
⊗k Rd be the space of tensors in Rd with k indices and dimension d.

Given vectors v1, ..., vk, consider a mapping π : [k]→ [K] (where K < n). In the lower bounds later
in this paper, it is assumed that the vectors are of the form vπ(1), vπ(2), ..., vπ(k), and we assume
that this mapping π is known beforehand (while it is not necessarily known by the algorithm, it can
still imply lower bounds). We denote o as {n ∈ [K] : |π−1(n)| is odd } – the theorem that will be
presented has a dependence on o, and o can intuitively be thought of as a parameter that controls
the asymmetry of vπ(1) ⊗ vπ(2) ⊗ ...⊗ vπ(k).

Define PARITY (., .) :
⊗k Rd × [k]→ {0, 1}d as follows:

PARITY (T, l)i =
⊕

j1,....jl−1,jl+1,...,jk∈[d]

Tj1j2...jl−1ijl+1...jk

For a π as was defined above, denote PARITYπ(T, i) :=
⊕

l:π(l)=i PARITY (T, l)
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3 Tensor PCA Motivation and Problem Statement

We first look at the standard version of PCA. Oftentime, one wants to compute a rank-k approx-
imation of a data matrix A, i.e.

∑k
i=1 σiuiv

T
i . (where |σ1| ≥ ... ≥ |σk| are the k largest singular

values of A, and ui, vi are the corresponding left and right singular vectors for each σi). This is
often useful for finding principal vectors to make analyzing data more tractable. We will just focus
on rank 1 approximations here (which in the case of standard PCA is just σ1u1v

T
1 ).

There has been much interest in tensors for reasons such as data that requires indexing multiple
times, and tensors also allow one to study behavior of higher moments of a random vector. PCA
has a generalization to tensors.

We now move on to the formal problem statement of Tensor PCA. Dudeja 2021 [2] mentions two
Tensor PCA problems, a testing problem and an estimation problem. The paper defines them as
follows:

Definition (Tensor PCA Testing Problem): One is given samples T1:n ∈
⊗k Rn. We want to

determine whether T ∼ D0, or T ∼ DV for some D ∈ D. Here, D0 is a distribution over tensors T
such that Ti1...ik ∼ N (0, 1). And each DV ∈ D is a distribution over tensors T , where V is a rank

1 tensor with ||V || =
√
dk, we have Ti1...ik ∼ N (

Vi1...ik√
dk

, 1)

Definition (Tensor PCA Estimation problem Problem) Let DV be as defined in the previous
definition. Given samples T1:n ∈ DV , one wants to find a V̂ such that ||V̂ − V || ≤ 1

4

Remark: Many of the older works like [1] define the problem as finding a rank-1 approximation for
a single tensor T , rather than a collection of tensors T1:n. This tensor T is assumed to be from a
distribution where elements are of the form βV +G, where V is a rank-1 tensor and G is Gaussian
noise, which is more specifically defined in that paper. β is defined as the ”signal-to-noise ratio,”
and it can be shown that n samples in the problem above corresponds to a signal-to-noise ratio on
the order of

√
n.

4 Standard Tensor PCA Results

Montanari 2014 [1] study the symmetric version of this problem, i.e. where V =
⊕k v0 for some

v0, and some others study the asymmetric case, where V is any rank 1 tensor v1 ⊕ ... ⊕ vk where
||vi|| ≤

√
d.

There are methods in [1] like tensor unfolding (decomposing a tensor into a db
k
2
c × db

k
2
c matrix,

reducing this to a problem where k = 2, which produces polynomial time algorithms for n = Ω(dd
k
2
e)

and runs exponentially for larger n. There are also other proposed methods like tensor power
iteration, but have a lower complexity.
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5 Statistical Query Learning

Statistical query learning is learning in a setting with some certain restrictions; one does not have
direct access to samples from a distribution, but can use oracles to query the expectation of an
arbitrary function within a certain tolerance. This report will discuss about Tensor PCA from a
statistical query learning perspective.

Definition (VSTAT oracle) Given a distribution D with sample space X and an integer t, denote
V STAT (t) as an oracle that given a query q : X → [0, 1], returns a real number in the interval

[p− τ, p+ τ ] where τ ≤ max(1t ,

√
p(1−p)

2 ), and p = EX∼Dq(X)

The above tolerance τ can be intuitively be thought of as the high-probability regions of n Bernoulli
variables.

6 SQ results for Tensor PCA

We will discuss the results from Dudeja 2021 [2]. The following lower bound is presented in that
paper (this bound gives conditions that require an exponential number of queries). Since this is
the main (and only) theorem that will be described in depth in this paper, we will refer to it as
”Theorem 4” to be consistent with Dudeja 2021 [2]

Theorem (Theorem 4 from Dudeja 2021 [2]) Let C0 ≥ 0, and let ε ∈ (0, 1). For the following
problems:

• Tensor PCA with o = 0 and sample size n ≤ C0d
k/2−t

• Tensor PCA estimation with o = 0 and sample size n ≤ C0d
k+2
2
−ε

• Tensor PCA testing or estimation with sample size n ≤ C0d
k+2
2
−ε

For any L ∈ N, there exists constants c1(k, L, ε, C0) > 0 and C1(k, L, ε) < ∞ such that for all
d ≥ c1(k, L, ε), any SQ algorithm that solves any of the above must make at least c1(k, L, ε, c0)d

L

queries.

The paper also shows that there are statistical query algorithms with matching upper bounds (i.e.
polynomial time algorithms for n above the threshold in the above theorem); more details can be
seen there [2].

The result for o ≥ 1 is pessimistic in the sense that it doesn’t match state of the art bounds. When
the tensor is asymmetric, o = k, giving that n ≤ C0d

k−ε, which is worse than the well-known bound

d
k
2 . The implications will be discussed in the final section of this report.
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6.1 Proof ideas

This section will focus on the high level proof ideas for the above theorem (i.e. exponential lower
bounds for query complexity given a limited number of samples).

One way such lower bounds are proven in general is to show that no matter what sequence of
queries is used, one can only eliminate a small fraction of distributions at each step.

Past works (including Kearns 98 [3], and more recently Feldman 2015 and 2018 [4] [5]), use some
notion of statistical dimension to prove lower bounds. On a high level, statistical dimension is
a measure of the complexity of the candidate distributions, for example, the maximum number
of functions that have low pairwise correlation (defined in [3]). There have been many notions of
varying strenghts of statistical dimension, such as SQ-DIM [3] and SDA (Statistical Dimension with
average correlation) that have been used to improve lower bounds for problems like planted clique
[4]. Dudeja 2021 focuses on using SDN (statistical dimension with discrimination norm), taken
from Feldman et. 2018 (which has been used to show bounds for problems like k − SAT ), defined
as follows, to prove the TPCA lower bounds:

Definition (statistical dimension with discrimination norm)Let ε > 0, let D∗ be a reference dis-
tribution, and H be a finite collection of distributions such that D∗ ∈ H. We define the statistical
dimension with discrimination norm ε for D∗ versus H (SDN(D∗,H, ε)) to be the largest m such

that for any S ⊂ H with |S| ≥ |H|m ,

1

|S|
∑
D∈S
|EDq(T )− ED∗q(T )| ≤ ε∀q :

k⊗
Rd → R,ED∗q2(T ) = 1

Feldman et al. 2018 [5] has done work on finding a lower bound for the number of queries as a func-
tion of the statistical dimension defined above. Using this, along with some other techniques (Fourier
analysis and hypercontractivity), Dudeja 2021 [2] proves the following concentration bound:

Proposition (Proposition 6 from Dudeja 2021) Let ε > 0, u ∈ N, u ≥ 2 be arbitrary. For the
reference distribution D0, and for every query q with ED0q

2(T ) = 1, we have

P [EDq(T )− ED0q(T )〉 ε] ≤ e

ε2
max

`1,...,`k∈N0

(
(u− 1)`1+...+`kpπ(`1:k)

)
where

pπ(`1, ..., `k) :=
∑

c∈
⊕k N0:||c||1≥1,PARTITYπ(c,i)=(1`i ,0)∀i∈[k]

1

dk||c||1c!

Here, c! denotes the product of the entrywise factorials of c. Setting ε = 1√
n

has the implication

that if |EDV q(T )−ED0q(T )| ≥ n−
1
2 , then the difference in the expectation of Q(T ) on D0 and D is
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greater than that which is permitted by V STAT (n) (since V STAT (n) has tolerance at most n
1
2

),

so one can distinguish between D and D0. In order to prove an exponential lower bound on the
number of queries, we want the number of candidate distributions DV from D that are eliminated
after each query to be small, i.e. o(d−t). Thus, it makes sense to try to find a tight upper bound
for the right-hand side of the above proposition, i.e. for pπ.

Using some probabilistic arguments, Dudeja 2021 gives the following upper bounds for pπ (for some
constant Ck):

pπ(`1, ..., `k) ≤



Ckd
−k
2 , `1 = ... = `k = 0, o = 0

Ckd
−k, `1 = ... = `k, o ≥ 1

Ckd
−

k+
∑k
i=1

`i
2
, `i ≤ |π−1(i)|, `i + |π−1(i)| even

Ckd
− `1∨...∨`k

2 , `1 ∨ ... ∨ `k ≥ 2k

Ckd
−k, otherwise

Dudeja proves an analogous version of the proposition for the tensor estimation problem, and
substituting n = O(ε

1
2 ) gives the desired bound in Theorem 4.

Dudeja spends the rest of the paper giving matching upper bounds of SQ algorithms and analyzing
what happens when the variance is modified. More information about that can be found in that
paper [2]

7 Limitations and remaining challenges

In the asymmetric case (especially evident when setting o = d in Theorem 4), we have that when
using a VSTAT oracle, one must have must have Ω(dk) samples in order to solve Tensor PCA

efficiently. However, the state of the art gives that the bound is Ω(d
k
2 ), so there is a gap. The

guarantees for the VSTAT lower bounds in Dudeja 2021 [2] are definitely tight, given that there are
matching upper bounds. This shows a weakness in the V STAT (n) oracle to capture the underlying
structure in the problem.

Feldman et al. 2018 [5] use an oracle called MV STAT , which includes an extra parameter ` that
controls the strength of the oracle V STAT and can be used to prove tighter lower bounds for
statistical query problems. This has been used for k-CSP problems. Analyzing the guarantees of
MV STAT on the Tensor PCA problem is still open, and a potential future direction could be to
find bounds for some SQ oracle stronger than V STAT on TPCA and see if it is able to match the
state of the art.
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